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I. SUMMARY

The geometry of the velocity field in a numerically simulated incompressible

turbulent boundary layer over a fiat plate at Ree=670 has been studied using

the invariants of the velocity gradient tensor. These invariants are computed

at every grid point in the flow and used to form the discriminant. Of primary

interest are those regions in the flow where the discriminant is positive; regions

where, according to the characteristic equation, the eigenvalues of the velocity

gradient tensor are complex. An observer moving with a frame of reference
which is attached to a fluid particle lying within such a region would see a local

flow pattern of the type stable-focus-stretching or unstable-focus-compressing.

When the flow is visualized this way, continuous, connected, large-scale struc-

tures are revealed that extend from the point just below the buffer layer out to

the beginning of the wake region.. These structures are aligned with the mean
shear close to the wall and arch in the cross-stream direction away from the

wall. In some cases the structures observed are very similar to to the hairpin

eddy vision of boundary layer structure proposed by Theodorsen. That the
structure of the flow is revealed more effectively by the discriminant rather

than by the vorticity is important and adds support to recent observations of

the discriminant in a channel flow simulation. Further details can be found in

the attached paper by Chacin, Cantwell and Kline. Of particular importance is

the fact that the procedure does not require the use of an arbitrary threshold

in the discriminant. Further analysis using computer flow visualization shows

a high degree of spatial correlation between regions of positive discriminant,

extreme negative pressure fluctuations and large instantaneous values of

Reynolds shear stress.

Further details of the work carried out under this grant can be found in the

paper by Chacin, Cantwell and Kline a copy of which is attached to this report.

2. PUBLICATIONS

Chacin, J., B. J. Cantwell, S. J. Kline 1996 Study of turbulent boundary layer

structure using the invariants of the velocity gradient tensor. Journal of Exper-

imental Thermal and Fluid Science (to appear).
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Abstract

The geometry of the velocity field in a numerically simulated in-

compressible turbulent boundary layer over a flat plate at Ree = 670

is studied using the invariants of the velocity gradient tensor (P, Q
and R). These invariants are computed at every grid point in the

flow and used to form the discriminant (D = 27R_/4 + Qa). Of pri-

mary interest are those regions in the flow where the discriminant is

positive; regions where, according to the characteristic equation, the

eigenvalues of the velocity gradient tensor are complex. An observer

moving with a frame of reference which is attached to a fluid particle

lying within such a region would see a local flow pattern of the type

stable-focus-stretching or unstable-focus-compressing. When the flow
is visualized in this way, continuous, connected, large scale structures

are revealed that extend from the just below the buffer layer (y+ _ 1.0)

out to the beginning of the wake region. These structures are aligned
with the mean shear close to the wall and arch in the cross-stream

direction away from the wall. In some cases the structures observed

are very similar to the hairpin eddy vision of boundary layer structure

proposed by Theodorsen [1]. Recently this conceptual picture has been

used by Perry at. al. [2] to develop a successful model of the turbulent

boundary layer based on an extension of the attached eddy hypothesis

first proposed by Townsend [3]. That the structure of the flow is re-
vealed more effectively by the discriminant rather than by the vorticity



is importantandaddssupportto therecentanalysisof channelflow
structurebyBlackburnet. al. [4]. Of particular importance {and also

in contrast to the use of the vorticity) is the fact that the procedure
does not require the use of an arbitrary threshold in the discriminant.

Further analysis using computer flow visualization shows a high degree
of spatial correlation between the regions of positive discriminant, ex-

treme negative pressure fluctuations and large instantaneous values of
Reynolds shear stress (u_v_).

Keywords: Turbulence structure, flow topology, topological invari-
ants, discriminant.

1 Introduction

Recent years have seen an explosion in the amount, and type, of data avail-

able on turbulent flows. In addition to better and more accurate experi-

mental measuring techniques, the advent of direct numerical simulations has

created the possibility of "virtual" wind tunnels; ones with large amounts of

primitive flow field information that can be accessed and analyzed repeat-

edly, almost on demand. However, before such analysis can be done, it is

important to find a way to recast the vast information that is available in

a form that will reveal the most dynamically significant aspects of the flow.

In this work, phase-space methods and some basic concepts of vector field

topology are used to accomplish this.

This method of studying fluid flows has been used in a variety of ways

to study the geometry of flow patterns particularly near no-slip boundaries

and in areas of flow separation and reattachment (see for example Taylor

[5], Oswatitsch [6] or Perry et. al. [7]). Chong et. al. [8] considered a

moving coordinate transformation in which the frame of reference remains

attached to a given particle in the flow. They used the velocity gradient

tensor invariants to map out a local description of all the various streamline

patterns which can occur in a three-dimensional, linear flow (a flow with non-

degenerate lowest order term in a Taylor series expansion). The result is a

precisely defined, frame independent way of describing structural features of

the flow. As will be shown, the method also removes the need for a threshold

in the variable used to visualize the flow.

Many of the recent applications of this technique to turbulent flows have

been to the study of the small scale, dissipating motions in the flow (see

for example Chen et. al. [9], Soria and Cantwell [10], Sofia et. al. [11],
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and Boratav and Pelz [12]). In those cases, the objective was to look at

the universality of fine-scale motions expressed in terms of joint PDF's of

the velocity gradient tensor invariants. The ultimate goal of this work is to

eventually incorporate this knowledge into predictive schemes for the dissi-

pation of turbulent kinetic energy. Such information could be of significant

importance, not only for conventional turbulence modeling applications, but

also for the potential development of better sub-grid scales models for Large

Eddy Simulations.

The first application of this approach to the study of the intermedi-

ate scale, coherent motions in a wall bounded flow is the recent work by

Blackburn et. al. [4] who analyzed one time realization of a channel flow
computed at a Reynolds number of 7860, based on the half-width of the

channel (Kim et. al. [13]). In that study, the authors used the discriminant

to identify coherent structures which extended from a region very close to

the wall all the way out to nearly the center of the channel.

In the present work, this method is applied to a turbulent velocity

field obtained from the direct numerical simulation of a flat plate turbu-

lent boundary layer carried out by Spalart [14]. The results agree with

previous results regarding the topology of the small-scale motions but, by

using computer-based flow visualization tools, it is possible to produce a

interesting view of the larger scales structures in the flow and their spatial

association with other turbulence statistical events such as Reynolds stresses

and pressure fluctuations.

2 Methodology

Following Perry and Chong [15] and Chong et. al. [8], the geometry of the

instantaneous streamlines in the neighborhood of any point in the flow, as

seen by an observer moving with the local speed of the fluid, can be classified

according to the nature of the eigenvalues, and associated eigenvectors, of

the velocity gradient tensor (Aij = OUi/Oxj) at that point. Such eigenvalues

are the roots of the characteristic equation of Aij, which is given by

A3 + PA 2 +QA+ R = 0

where P, Q and R are the tensor invariants. These invariants are

(I)

P = -tr[A] (2)
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Q =

n = -det (A) (4)

where tr and det indicate the trace and the determinant of the tensor re-

spectively. For the flow to be considered here, the first invariant (P) is

identically zero because of the incompressibility condition. Hence, Eq. 1
reduces to

_3 + QA + R = 0 (5)

The nature of the roots of this equation is determined by the values of

the two remaining invariants Q and R. In particular, it can be shown that

the line that defines the boundary (in the Q - R plane) between the region

where all the roots are real and the region where two roots are complex and

one real is given by (see Chong et. al. [8] for the full details).

2_7R2+ Q3 = 0
4

The discriminant of Aij is

D = _-_ +j¢-

(_)

(7)

and it identifies the most basic topological information contained in the

invariants Q and R. Specifically, for the points in the flow where D > 0, Eq.

5 admits two complex and one real solutions. These points are called foci. If

D < 0 all the solutions are real and the point is called a node-saddle-saddle

according to the terminology adopted by Chong et. al. [8].

Figure 1: Idealized streamline pattern around a focus critical point.

Figure 1 is an idealized sketch of the instantaneous streamlines in the

neighborhood of a focus point (D > 0). The specific direction that a fluid

particle would follow along those streamlines is determined by the sign of

the third invariant of Aij, R, and by the incompressibility condition. If R is



positive,the focusissaidto beunstable.In thiscase,thefluid movesaway
fromthecenterin theplaneof thespiralsand,becauseof incompressibility,
it movestowardsthecenteralongthe axis (compression).If R is negative,
the direction of motion is reversed. The fluid moves towards the center in

the spiral plane and away from it along the axis (stretching). This is called
a stable focus.

Figure 2: Idealized streamline pattern around a node-saddle-saddle critical

point.

Figure 2 is a sketch of a node-saddle-saddle point (D < 0) and, again,

the direction of motion along the streamlines will be determined by the sign

of the third invariant and the requirement of mass conservation.

Using this technique, the two non-zero invariants of the velocity gradient

tensor Q and R, and its discriminant D, can then be used to classify the

topology of every point in a three dimensional flow field according to its

position on the two dimensional Q - R plane. This is summarized in Fig. 3

Figure 3: Summary of three dimensional incompressible topologies (from

Soria et. al. [11]).

It is important to notice that Aij, and all its invariants, remain constant

under a non-uniform translation. This means that, even though an observer

translating (not rotating) at, an arbitrary velocity may see see a streamline

pattern different from than that shown on Figs. 1 and 2, the topological

classification of such point will be the same, independently of the frame of
reference.



3 Results

The topological classification method described in the previous section was

used to study the velocity field obtained from the spectral direct numerical

simulation of a turbulent boundary layer under zero pressure gradient done

by P. R. Spalart (see Spalart [14]). All the results presented here are for a

Reynolds number, based on momentum thickness (Ree), of 670.

The approach used is similar to that used by Chen et. al. [9], Sofia et.

al. [11] and Blackburn et. al. [4]. At every grid point in the simulation,

all nine components of the velocity gradient tensor were computed using a

spectral series expansion consistent with that used in the DNS calculation.

From them, the invariants (Q and R) of Aij were obtained using Eqs. 2 - 4

and used to classify the geometry of the local streamlines according to their

position in the Q - R plane. At every time realization of the simulation, all

four types of three-dimensional topologies are present in the flow field but

with different probabilities. Figure 4 shows a time-averaged, unnormalized,

joint probability distribution for Q and R constructed from a total sample

of more than 141 million data points gathered over 90 realizations. The

axes of the plot are not normalized so the values are in physical units. Four

contours of equal probability levels with logarithmic spacing are shown. The

values associated with these contours (shown in the legend at the foot of the

figure) correspond to the density of data points per unit area of the plot,

per simulation time step.

Figure 4: Time-averaged, unnormalized joint probability density distribu-

tions for the second and third invariants of the velocity gradient tensor (Q

and R). The dashed lines are lines of constant discriminant (Eq. 7). The

values grow or decrease as indicated by the arrows.

The contours in Fig. 4 show a tendency for the data to gather in a

tear-drop or elongated elliptical region centered at the origin whose main

axis is inclined to the left of the Q axis. Also, most of the points are

clustered near the origin of coordinates. The inner-most (darkest) contour



hasadensityof datapoints1000timesbiggerthan theouter-mostoneand
containsalmost95%of thedata. This tendencyhasalsobeenobservedin
time-developingcompressibleand incompressiblemixing layers(seeSoria
et. al. [11] and Chen et. al. [9]) as well as in turbulent channel flow (see

Blackburn et. al. [4]). In spite of this, it can also be seen that significant

excursions are also possible. Most of these excursions occur in the upper-left

quadrant (stable-focus-stretching) and the lower-right quadrant (unstable-

node-saddle-saddle). The fluid motions associated with these events can be

analyzed further by dividing the velocity gradient tensor into its symmetric

and antisymmetric parts

where

Aij = Sij + Wij (8)

= kox, + / (9)

Wij - 2 _ _xj cgxi ] (10)

Using these relations, it is a simple matter to show that the second

invariant (Q) can be written as

1 (WijWij - SijSij) (11)

The first term on the right hand side of Eq. 11 is proportional to the total

enstrophy, the second one is proportional to the kinetic energy dissipation

rate. Both of these terms are non-negative. Then, for the points lying away

from the origin in the upper-left quadrant, where Q is large and positive,

the rate of rotation dominates the strain rate. For those points in the lower-

right quadrant, where Q is large and negative, the vorticity is low compared

to the rate of strain, indicating that these are motions with high levels of

dissipation. It can also be seen in Fig. 4 that in the lower-right quadrant,

near the "tail", the distribution is skewed towards the negative discriminant

side of the Q - R plane. This means that regions of high dissipation are

preferentially of the kind unstable-node-saddle-saddle.

Invariant plots like that shown in Fig. 4 have been used predominantly

for the study of the small, dissipating scales in turbulent flows since these

are the motions with the largest gradients of velocity and, hence, the largest



valuesof Q and R. Blackburn et. al. [4] then extended the application

of this methodology to the study of the larger, energy containing scales of

the flow. For this, it would be advantageous to combine the information

contained in the two invariants into a single scalar quantity that could then

be used to study the flow structure in physical space. The scalar they chose

was the discriminant of the velocity gradient tensor, D (Eq. 7). As shown in

Fig. 3, the discriminant divides the Q - R plane into two main regions. The

upper one, where D > 0, corresponds to points with focus topology (stable

or unstable depending on the sign of R) while the lower region, D < 0,

is that of node-saddle-saddle topology, again stable or unstable depending

on R. Using flow visualization software, it is then possible to construct

isosurfaces of discriminant in physical space and use this scalar to study the

spatial structure of the flow field. This is the approach used here.

Figure 5: Top view of the computational volume. The blue contours are

regions of positive discriminant (focus topology). The vertical extent of the
domain is from y+ _ 1 to y+ _ 138. All the areas that are not colored have

topology of the type node-saddle-saddle

Figure 5 shows a large section of one realization of the DNS computa-

tional domain as seen from directly above. The dimensions shown on the

coordinate axes have been non-dimensionalized by wall units (u_ and v).

Regions of positive discriminant (focus topology), both stable and unstable,

are shown in blue and are visualized by plotting surfaces of constant dis-

criminant value (D ._ 0). These regions reveal continuous, connected flow

structures of large scale. Near the wall, the individual structures are elon-

gated in the streamwise direction and they intertwine to form large streaks,

some of them over 800 wall units long. Away from the wall, near the begin-

ning and into the log layer, these regions of focus topology tilt upwards and

then across the mean flow to form hairpin or horseshoe shaped structures.

Several of these structures are visible in the flow field, for example around

x + _ 1036, z + _ 600 or x + _ 400, z + _ 100.

A close up view of one such hairpin, the one located within the red out-



Figure6: a) Closeup view of a near-wallregionof positivediscriminant.
b) Sideviewof thesameregion.The verticalextentof the domainis from
y+_l toy+_83.

line in Fig. 5, is shown in Figs. 6 a) and b). Two different view points are

used in order to show the three-dimensionality of the structure. The dimen-

sions of this sub-volume, normalized by wall units, are 265 in the streamwise

direction, 194 in the spanwise direction and, in the wall-normal one, it ex-

tends from y+ _ 1 to y+ _ 83. The shape of this structure is conspicuously

reminiscent of the horseshoe shaped vortices that are believed to be the

central structure in wall-bounded turbulence (see for example Theodorsen

[1], Head and Bandyopadhyay [16] and Robinson [17]). In Fig. 6, a single
surface of constant value of the discriminant was sufficient to define the en-

tire structure from just over the wall into the log layer. Furthermore, the

threshold value of that isosurface is unambiguously set by the value of the

discriminant that divides the regions of different topologies in the Q - R

plane. This value is D = 0 and it is the same for all incompressible flows.

The advantage of this feature is illustrated by Fig. 7. On this plot, the

same sub-volume shown in Fig. 6 is studied using two different techniques.

Figure 7 a) shows isocontours of enstrophy or total vorticity magnitude. By

looking again at Fig. 4, it can be seen that, for the majority of points in the

flow were the discriminant has a large, positive value, the second invariant

Q also has a large, positive value. From Eq. 11, these are motions where the

rotation rate is large compared to the total dissipation (i.e. vortex tubes). In

Fig. 7 a), a horseshoe shaped vortex tube that corresponds to the structure

in Fig. 6 is somewhat visible near the log layer. This correspondence is

consistent with Theodorsen [1] who, by looking at a simplified version of

the enstrophy transport equation concluded that, in order for turbulence

to be created and maintained near a no-slip boundary, it was necessary for

vortex lines to arrange themselves in the shape of a horseshoe that leaned

away from the wall and in the direction of the imposed shear. It is however

very difficult to find a single value for the isocontour of enstrophy that can

be used to reveal the entire structure, particularly near the wall where the

mean shear, and the mean vorticity, are both high. In fact, Fig. 7 a) would

be difficult to interpret by itself without the help of Fig. 6.
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Figure7: Closeupviewof near-wall region, a) Isocontours of total vorticity

magnitude, b) Isocontours of total kinetic energy dissipation. The vertical

extent of the domain is from y+ _ 1 to y+ _ 83.

Figure 7 b) is again the same sub-volumes this time showing isocontours

of total kinetic energy dissipation (SI/S_/). Once again, the high mean shear
near the wall makes it difficult to select a value for the isocontours that can

be used to study the boundary layer structure and, as a consequence, the

figure becomes relatively featureless.

Robinson [17] did an extensive analysis of the kinematics of turbulence

using the same numerical simulation data used here. In particular, the role

of vortices as a primary turbulent structure was carefully studied. In that

work, the author used the pressure field, specifically regions of low pressure,

as a means to identify turbulence structure. The rational was that, for a

two-dimensional vortex with circular streamlines, and as a consequence of

this assumed symmetry in the velocity field, the pressure has to reach a

minimum at the vortex center. In the absence of such circular streamlines,

the extrema in the pressure field need not occur.

Figure 8: Close up view of near-wall region showing regions of positive

discriminant (blue) and isocontours of pressure (red). a) p/pu 2 .._ -7.5. b)

p/pu_ ,_. -4.3. The vertical extent of the domain is from y+ _ 1 to y+ _ 83.

Figure 8 shows the spatial association between the regions of positive

discriminant (shown in blue), for the same sub-volume used in Fig. 6,

and the pressure field (shown in red). For this figure, the blue isocon-

tours of discriminant have been made transparent so that pressure contours
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can besuperposed.In Fig. 8 a), a particular thresholdvaluewaschosen
(p/(pu_r)._ -7.5) corresponding to the lowest pressure values in the volume.

There is a visible degree of spatial correlation between the two regions, but

the pressure level chosen was insufficient to reveal the entire horseshoe struc-

ture. As the threshold level is changed to p/(pu_) ,_ -4.3 (the same level

used by Robinson [17]) in Fig. 8 b), the correspondence between the two

fields is still apparent but it is no longer universal. The computation of cor-

relation coefficients between discriminant and pressure, which can be used

to quantify this observation, is currently being done.

Figure 9: Close up view of near-wall region showing regions of positive

discriminant (blue) and isocontours of instantaneous Reynolds shear stress

(utv'). a) Regions of positive discriminant, b) Positive and negative

Reynolds shear stress. Magenta contours correspond to utv_/u_ ,_ -47.

Yellow contours are u'vl/u_ _ 54.The vertical extent of the domain is from

y+_l toy+_102.

Another area of interest is what role, if any, these structures defined

by the discriminant of the velocity gradient tensor play in the production

of turbulence. Figure 9 a) shows a top view of a different sub-volume of

the DNS data field. The new dimensions, in wall units, are 518 in the

streamwise direction (x+), 286 in the spanwise coordinate (z +) and, in the

direction normal to the wall, it extends from y+ _ 1 to 102 or just outside

the edge of the log layer. This sub-volume is located near the middle of

Fig. 5, at x + _ 1000, z + _ 500. Once again, the blue contour encloses a

region where the discriminant is positive (focus topology). All the areas that

are not colored are of node-saddle-saddle type (either stable or unstable).

Another hairpin shaped structure of large scale is clearly visible. On Fig.

9 b), surfaces of constant, instantaneous Reynolds shear stress value are

superposed (u_v_). In the magenta color, the strongest, negative Reynolds

stresses are indicated (u'v'/u 2 ,._ -47) while the yellow corresponds to the

strongest, positive levels (u'v'/u_ _ 54). For this flow, a time-averaged

profile of utv_/u_ reaches a maximum value of -0.87, so the events shown
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in the plot are up to 62 timesstrongerthat this meanvalue. The spatial
associationbetweenthese"bursts" andthe D -- 0 contour is very clear. It

is important to observe however that the actual Reynolds stress generation,

while immediately adjacent to the points of focus topology, seems to take

place in areas of where the local topology is of node-saddle-saddle and not
within the structures themselves. This observation is consistent with the

results of Robinson [17].

4 Discussion

The importance of vortices in boundary layer turbulence has been argued

for many years now. This, in spite of the fact that there is still considerable

disagreement as to what constitutes a vortex. The intuitively clear idea

that a vortex is a region where the streamlines spiral around a point may

not be useful when such a structure is embedded in a turbulent velocity

field. In addition, visual interpretation of three-dimensional streamlines,

almost always from direct numerical simulations, is a daunting task which

is further complicated by fact that streamlines are not Galilean invariant.

Two-dimensional information, like that obtained from single and two-point

correlations or from the projection of the velocity field onto a particular

plane can be potentially misleading.

Perry and Chong [18] showed the particular dangers in trying to in-

terpret three-dimensional flow patterns using two-dimensional streamline

projections. In that study, they took the velocity field associated with a

Burgers vortex and constructed a projection of such field onto a plane that

intersected the vortex axis. By varying the angle of intersection, the stream-

line pattern visible on that plane changed smoothly from a stretched vortex

(at 90 ° angle) to a compressed vortex (at 60 °) to a saddle point (at 0°).

A visual interpretation of streamlines projections can only be safely done

when such projections are carried out on the canonical planes defined by the

eigenvectors of the velocity gradient tensor.

This danger is particularly present in turbulent flow fields where three-

dimensional streamlines are difficult to analyze and it is normally problem-

atic to find the proper plane onto which to project them. Figure 10 shows a

spanwise cut through the field presented in Fig. 5 the streamwise location

of the cut is a about x + _ 796. On this plane, the blue regions are again

regions of focus topology and, in yellow, are the areas of node-saddle-saddle

topology. The red areas are zones where the discriminant value is very small
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Figure10:Spanwisecut of theflowfieldshowingregionsof positivediscrim-
inant (blue)aswellas instantaneousstreamlinesprojectedonto the plane.

and,hence,wherenumericalerrorsmight makeit difficult to ascertainthe
local topology.Superposedon this plot aretwo-dimensionalprojectionsof
the turbulentstreamlines(shownby the blacklines). Nearthe wall, where
the meanshearis high andcloselyalignedwith the streamwiseCartesian
coordinateusedin the simulation,oneof the eigenvectorsof Aij is alsoin
closealignmentwith the x + coordinate. As a result, the y+ - z + plane

shown in the figure is close to a canonical plane for this region of the flow

and, as a consequence, the streamlines that depict a spiraling fluid motion

are also regions of where the local topology is of focus type.

Figure 11: Instantaneous streamline pattern, a) Stationary frame of refer-

ence. b) Frame of reference moving at the mean speed of the flow.

Away from the wall however, as the mean shear decreases, the align-

ment of the principal axis of the velocity gradient tensor with the Cartesian

coordinate system used in the projection is not as likely. Figure 10 shows

several areas where the streamlines seem to indicate the presence of vorti-

cal motion that, nonetheless, have a node-saddle-saddle topology (negative

discriminant). One of those areas, outlined by the black square located at

about z + _ 700, y+190, is magnified in Fig. 11. For this figure, a small

volume of data, centered around the aforementioned outline, was extracted

from the full simulation. The dimensions of this volume are 101, 67 and 55

wall units in the streamwise, spanwise and wall normal directions respec-

tively. Figure 11 a) shows the three-dimensional streamlines, constructed
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from the velocityfielddata,andasseenbya stationaryobserver.Sincethe
streamwisecomponentof the velocityis muchhigherthan both, the span-
wiseandwall-normalcomponents,thestreamlineslookalmostlike straight
linesand yield little informationabout the detailsof the flow. Figure 11
b) showsthesamevolumebut, for this case,thestreamlinesarethosethat
wouldbeseenby anobservermovingat the meanspeedof the flow. More
detailsthanin Fig. 11a)areapparentbut theflowpatternisjust asdifficult
to interpret.Differentchoicesfor thecoordinatesystemtranslationvelocity
will yieldvastlydifferentresults.

Whetheror not thestructuresidentifiedbytheinvariantsof thevelocity
gradient tensor(Q and R) and it's discriminant (D) are vortices is not

clear. In some cases they probably satisfy almost any definition of such

a structure. In others, it may depend on the particular definition chosen.

In the end, it may not be important. The primary objective behind the

study of turbulence structure is to condense the large amount of information

contained in a turbulent field and extract from it the most dynamically

important aspects. The topological classification method used here provides

a rigorous way of looking into both the small as well as the large, organized

scales of motion in the flow and the results presented suggest that this may

be a useful one in addressing such an objective.

5 Conclusions

The invariants of the velocity gradient tensor (Q and R) were used to study

the structure of a turbulent boundary layer. The joint probability distri-

bution of these invariants shows many of the same trends that have been

observed in other turbulent flows. These trends include the overall tear-drop

shape of the distribution as well as a preference for topologies of the type

the stable-focus stretching and unstable-node-saddle-saddle. This later type

was also shown to correspond with motions having high values of turbulent

kinetic energy dissipation. In addition to the invariants, the discriminant

of A/j was used to study the large scale features of the flow. The use of

these scalar invariants provides a consistent, unambiguous, coordinate and

threshold independent framework for the study of turbulent flows.

Computer flow visualization of points that have focus topology (D > 0)

showed that they form long, coherent regions of large streamwise extent

near the wall as well as a significant number of horseshoe-like structures.

The shape of these structures is reminiscent of the hairpin eddies proposed
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by Theodorsen[1]. Additional resultspresentedhereseemto indicatethat
thesestructuresare important in the turbulenceproductionmechanism.
In particular,regionsof highinstantaneousvaluesof Reynoldsshearstress
(ulvr) occurat theedgesof theseeddiesdefinedby the D = 0 surfaces.
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7 Nomenclature

Roman Symbols

Aij
D

P

P

Q
R

Reo

Sij

UPU t

xj
X + _ y+_ Z +

Wij

Velocity gradient tensor (OUi/Oxj)

Discriminant of the velocity gradient tensor Aij

Determinant of a tensor

First invariant of the velocity gradient tensor Aij

Instantaneous pressure

Second invariant of the velocity gradient tensor Aij

Third invariant of the velocity gradient tensor Aij

Reynolds number based on momentum thickness

Rate of strain tensor

Trace of a tensor

Instantaneous velocity component

Instantaneous Reynolds stress tensor component

Wall shear velocity.
Cartesian coordinate direction

Cartesian coordinate axis normalized by wall units (u_

and v) as defined in Fig. 5
Rate of rotation tensor

16



Greek Symbols

P
0

generic eigenvalue of the velocity gradient tensor

kinematic viscosity

Fluid density

Boundary layer momentum thickness
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Figure1: Idealizedstreamlinepatternaroundafocuscritical point.



Figure2: Idealizedstreamlinepatternarounda node-saddle-saddlecritical
point.
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Figure 3: Summary of three dimensional incompressible topologies (from

Soria et. al. [11]).
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Figure 4: Time-averaged, unnormalized joint probability density distributions for the second

and third invariants of the velocity gradient tensor (Q and R). The dashed lines are lines of

constant discriminant (Eq. 7). The values grow or decrease as indicated by the arrows.
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Figure 5: Top view of the computational volume. The blue contours are regions of positive

discriminant (focus topology). The vertical extent of the domain is from y+ _ 1 to y* _ 138.

All the areas that are not colored have topology of the type node-saddle-saddle.
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Figure 6: a) Close up view of a near-wall region of positive discriminant, b) Side view of the

same region. The vertical extent of the domain is from y+ _ 1 to y+ _ 83.
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Figure 7: Close up view of near-wall region, a) Isocontours of total vorticity magnitude, b)

Isocontours of total kinetic energy dissipation. The vertical extent of the domain is from

y+_ 1 toy+ _83.
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Figure 8' Close up view of near-wall region showing regions of positive discriminant (blue)

and isocontours of pressure (red). a) p/pu?: '_ -7.5. b) p/pu2T _ -4.3. The vertical extent

of the domain is from y+ _ 1 to y+ _ 83.
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Figure 9: Close up view of near-wall region showing regions of positive discriminant (blue)

al_d isocontours of instantaneous Reynolds shear stress (u'v'). a) Regions of positive dis-

ci'iminant, b) Positive and negative Reynolds shear stress. Magenta contours correspond to

u'v'/u2_ _ -47. Yellow contours are u'v'/u$ _ 54.The vertical extent of the domain [s from

y+_l toy+_102.
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Figure 10: Spanwise cut of the flow field showing regions of positive discriminant (blue) as

well as instantaneous streamlines projected onto the plane.
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Figure 11: Instantaneous streamline pattern, a) Stationary frame of reference, b) Frame of

reference moving at the mean speed of the flow.


